Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jonathan D Crane* and Eleanor Rogerson

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.047$
$w R$ factor $=0.141$
Data-to-parameter ratio $=26.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(Adamantan-1-yl)-5-methylbenzo[d]-[1,3]oxazin-4-one

At 150 K , the benzo $[d][1,3]$ oxazin- 4 -one heterocycle in the title compound, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$, lies on a crystallographic mirror plane. This group is planar despite the resulting unfavourable steric interaction between the proximal 5-methyl and 4carbonyl groups.

Comment

The title compound, (I), has a planar benzo $[d][1,3]$ oxazin- $4-$ one heterocycle that lies on a crystallographic mirror plane. The molecular structure of (I) is shown in Fig. 1 and selected bond distances and angles are given in Table 1. Within the oxazin-4-one group the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N}$ double bonds are clearly localized, but of the two formally single $\mathrm{C}-\mathrm{O}$ bonds, $\mathrm{O} 2-\mathrm{C} 2$ is significantly shorter than $\mathrm{O} 2-\mathrm{C} 1$. The bicyclic heterocycle is planar despite the unfavourable steric interaction between the 5-methyl and 4-carbonyl groups, but the planarity allows π-stacking of these groups in the direction of the b axis (Fig. 2), with an inter-layer distance of 3.3662 (4) \AA (Table 2). The widened bond angles of 128.39 (12), 121.75 (11) and $123.51(12)^{\circ}$ for $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4, \mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$ and $\mathrm{C} 4-$ $\mathrm{C} 5-\mathrm{C} 9$, respectively, still result in a short $\mathrm{O} 1 \cdots \mathrm{C} 9$ distance of 2.838 (2) Å.

(I)

Experimental

Suitable crystals of the title compound, (I), were prepared by the attempted recrystallization of 2-[(adamantane-1-carbonyl)-amino]-6methylbenzoic acid from petroleum ether (80/100)-toluene.

Figure 1
View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by spheres of arbitrary size. Only one orientation of the disordered methyl group is shown.

Received 22 March 2004 Accepted 23 March 2004 Online 27 March 2004

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$
$D_{x}=1.352 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=295.37$
Monoclinic, $P 2_{1} / m$
$a=8.3514$ (12) \AA
$b=6.7324$ (5) \AA
$c=13.3203$ (19) A
$\beta=104.275$ (11) ${ }^{\circ}$
$V=725.81(16) \AA^{3}$
$Z=2$

Data collection

Stoe IPDSII area-detector
diffractometer
φ and ω scans
Absorption correction: none 10561 measured reflections
3325 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.141$
$S=1.00$
3325 reflections
126 parameters
H -atom parameters constrained
Mo $K \alpha$ radiation
Cell parameters from 8117
reflections
$\theta=2.5-34.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, colourless
$0.60 \times 0.25 \times 0.20 \mathrm{~mm}$

2132 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=34.7^{\circ}$
$h=-13 \rightarrow 13$
$k=-10 \rightarrow 9$
$l=-21 \rightarrow 17$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.2010(16)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.4019(16)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.3750(15)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.4625(17)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.3940(15)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.4082(18)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.2762(15)$		
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1$	$122.07(9)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 10$	$123.61(11)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$117.81(11)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 10$	$111.75(9)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$116.33(11)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$122.43(10)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	$128.39(12)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 1$	$117.77(11)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 4$	$115.28(10)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 1$	$121.75(11)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{O} 2$	$124.64(11)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9$	$123.51(12)$

Table 2
Contact distances (\AA).

$\mathrm{C} 1 \cdots \mathrm{C} 7^{\mathrm{i}}$	$3.3984(4)$	$\mathrm{C} 4 \cdots \mathrm{C} 8^{\mathrm{i}}$	$3.4884(5)$
$\mathrm{C} 3 \cdots 5^{\mathrm{i}}$	$3.4038(4)$	$\mathrm{N} 1 \cdots \mathrm{C}^{\mathrm{i}}$	$3.5083(5)$

Symmetry code: (i) $-x,-y, 1-z$.

Figure 2
Packing diagram for (I), viewed down the b axis. Only one orientation for the disordered methyl group is shown.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were constrained to an ideal geometry with a $\mathrm{C}-\mathrm{H}$ distance of $0.98 \AA$, but the group was allowed to rotate freely about its $X-\mathrm{C}$ bond. In its final position, the methyl group is not bisected exactly by the mirror plane and hence is disordered $50: 50$ about the mirror plane. All other H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.95-1.00 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$ for all of the H atoms.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe \& Cie, 2001) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2001). X-AREA, X-RED 32 and X-STEP32. Stoe \& Cie GmbH, Darmstadt, Germany.

